設(shè)隨機(jī)變量ζ服從二項(xiàng)分布,試求θ2無(wú)偏估計(jì)量。
您可能感興趣的試卷
你可能感興趣的試題
一家汽車生產(chǎn)企業(yè)在廣告中宣稱“該公司的汽車可以保證在2年或24000公里內(nèi)無(wú)事故”,但該汽車的一個(gè)經(jīng)銷商認(rèn)為保證“2年”這一項(xiàng)是不必要的,因?yàn)橥ǔT撈髽I(yè)生產(chǎn)的汽車在2年內(nèi)行駛的平均里程超過(guò)24000公里。假定這位經(jīng)銷商要檢驗(yàn)假設(shè),抽取容量n=32個(gè)車主的一個(gè)隨機(jī)樣本,計(jì)算出兩年行駛歷程的平均值=24517公里,標(biāo)準(zhǔn)差為s=1866公里,計(jì)算出的P值為()。
A.0.0022
B.0.0035
C.0.2420
D.0.0240
一家汽車生產(chǎn)企業(yè)在廣告中宣稱“該公司的汽車可以保證在2年或24000公里內(nèi)無(wú)事故”,但該汽車的一個(gè)經(jīng)銷商認(rèn)為保證“2年”這一項(xiàng)是不必要的,因?yàn)橥ǔT撈髽I(yè)生產(chǎn)的汽車在2年內(nèi)行駛的平均里程超過(guò)24000公里。假定這位經(jīng)銷商要檢驗(yàn)假設(shè),抽取容量,n=32個(gè)車主的一個(gè)隨機(jī)樣本,計(jì)算出兩年行駛歷程的平均值=24517公里,標(biāo)準(zhǔn)差為s=1866公里,計(jì)算出的檢驗(yàn)統(tǒng)計(jì)量為()。
A.z>1.57
B.z<-1.57
C.z=2.33
D.z=-2.33
設(shè)ζ1,...ζn為取自參數(shù)為λ的普哇松分布的一個(gè)子樣,試證子樣平均都是λ的無(wú)偏估計(jì),并且對(duì)任一值α,也是的無(wú)偏估計(jì)。
在對(duì)兩個(gè)電視廣告效果的評(píng)比中,每個(gè)廣告在一周的時(shí)間內(nèi)播放6次,然后對(duì)看過(guò)廣告的人要求他們陳述廣告的內(nèi)容,記錄的資料如表所示:
在α=0.05的顯著性水平下,檢驗(yàn)對(duì)兩個(gè)廣告的回想比率沒有差別,即檢驗(yàn)假設(shè),得到的結(jié)論是()。
A.拒絕H0
B.不拒絕H0
C.可以拒絕也可以不拒絕H0
D.可能拒絕也可能不拒絕H0
最新試題
盒中有7個(gè)球,編號(hào)為1至7號(hào),隨機(jī)取2個(gè),取出球的最小號(hào)碼是3的概率為()。
?設(shè)連續(xù)型隨機(jī)變量X的概率密度函數(shù)為,則P{-1< X< 1}=()。
設(shè)總體X和Y都服從正態(tài)分布N(0,σ2),X1,…,Xn和Y1,…,Yn分別是總體X和Y的樣本且容量都為n,其樣本均值和樣本方差為X ?,SX2和Y ?,SY2,則有()。
隨機(jī)變量X,其分布未知,E(X)=μ,D(X)=σ2,則P{∣X-μ∣<3σ}的取值范圍是()。
關(guān)于二維連續(xù)型隨機(jī)變量,下列說(shuō)法不正確的是()。
?函數(shù)y=aebx,a>0,b<0則下面能反映x,y變化規(guī)律的是()。
?設(shè)總體X服從正態(tài)分布N(0,σ2),X1,…,X10為其樣本,統(tǒng)計(jì)量?服從F分布,則i的值為()。
有6部手機(jī),其中4部是同型號(hào)甲手機(jī),2部是同型號(hào)乙手機(jī),從中任取3部,恰好取到一部乙手機(jī)的概率是()
若隨機(jī)變量X,Y相互獨(dú)立,下列表達(dá)式錯(cuò)誤的是()。
設(shè)為標(biāo)準(zhǔn)正態(tài)分布函數(shù),且,相互獨(dú)立,令,則由中心極限定理知的分布函數(shù)近似于()。