A、二等分
B、三等分
C、四等分
D、五等分
您可能感興趣的試卷
你可能感興趣的試題
A、化圓為方
B、三等分角
C、倍立方問題
D、阿基米德猜想
A、π
B、大半圓的直徑
C、大圓弧的弧度
D、小圓弧的弧度
A、等邊三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形
A、李善蘭
B、黃耀奎
C、鄒伯奇
D、徐有壬
A、《方圓闡幽》
B、《弧矢啟秘》
C、《對數(shù)探源》
D、《麟德術(shù)解》
A、前6卷
B、4到12卷
C、7-12卷
D、后9卷
A、正方形
B、長方形
C、菱形
D、平行四邊形
A、拉格朗日
B、歐拉
C、傅里葉
D、高斯
A、角度
B、周長
C、表面積
D、棱柱面
A、底面積乘以高除以2
B、底面積乘以高除以3
C、邊長乘以高除以2
D、邊長乘以高除以3
最新試題
斐波那契綜合阿拉伯和希臘資料著成的關(guān)于算術(shù)和代數(shù)的重要著作是()
近代數(shù)學的第一個里程碑是()的發(fā)明。
()的問世標志了解析幾何的誕生,進而標志了近代數(shù)學開始。
近代數(shù)學的開端是解析幾何的誕生,被稱為“解析幾何之父”的是()
中國數(shù)學的三個繁榮時期是()
從數(shù)學起源開始,數(shù)學學科發(fā)展的直接動力是什么?
高次方程數(shù)值求解集大成者是()
數(shù)字發(fā)明之前,常見的三種記數(shù)方式有()
最早的符號代數(shù)著作是()
談談對對牛頓和萊布尼茨創(chuàng)立微積分優(yōu)先權(quán)的理解;并論述兩位創(chuàng)立微積分的相同點及不同點。