設f(x)的一個原函數(shù)為cosx,g(x)的一個原函數(shù)為x2,則f[g(x)]等于:()
A.cosx2
B.-sinx2
C.cos2x
D.-sin2x
您可能感興趣的試卷
你可能感興趣的試題
設4/(1-x2)·f(x)=d/dx[f(x)]2,且f(0)=0,則f(x)等于:()
A.(1+x)/(1-x)+c
B.(1-x)/(1+x)+c
C.1n|(1+x)/(1-x)|+c
D.1n|(1-x)/(1+x)|+c
不定積分[f′(x)/(1+[f(x)]2)]dx等于()
A.ln|1+f(x)|f+c
B.(1/2)1n|1+f2(x)|+c
C.arctanf(x)+c
D.(1/2)arctanf(x)+c
設一個三次函數(shù)的導數(shù)為x2-2x-8,則該函數(shù)的極大值與極小值的差是:()
A.-36
B.12
C.36
D.以上都不對
不定積分xf″(x)dx等于()
A.xf′(x)-f′(x)+c
B.xf′(x)-f(x)+c
C.xf′(x)+f′(x)+c
D.xf′(x)+f(x)+c
不定積分等于()
A.
B.-
C.2
D.-2
若f(x)dx=F(x)+c,則sinxf(cosx)dx等于:()
A.F(sinx)+f
B.-F(sinx)+c
C.F(cosx)+c
D.-F(cosx)+c
如果f(x)=e-x,則[f′(lnx)/x]dx等于:()
A.-(1/x)+c
B.1/x+c
C.-lnx+c
D.1nx+c
A.(1nx/2)(2+lnx)+c
B.x+(1/2)x2+c
C.x+ex+c
D.ex+(1/2)e2x+c
A.-cosx+c
B.cosx+c
C.1/2(sin2x/2-x)+c
D.1/2(2sin2x-x)+c
設f′(cos2x)=sin2x,則f(x)等于()
A.cosx+1/2cos2x+c
B.cos2x-1/2cos4x+c
C.x+(1/2)x2+c
D.x-(1/2)x2+c
最新試題
若z=f(x,y)在(x0,y0)處的兩個一階偏導數(shù)存在,則函數(shù)z=f(x,y)在(x0,y0)處可微
設單調可微函數(shù)f(x)的反函數(shù)為g(x),f(1)=3,f′(1)=2,f″(3)=6則g′(3)=()
設函數(shù) 在x=0處連續(xù),則a=()
微分方程的含有任意常數(shù)的解是該微分方程的通解。
曲面z=x2+y2在(-1,2,5)處的切平面方程是:()
曲線在原點處的法平面方程為:()
設D是由不等式|x|+|y|≤1所確定的有界區(qū)域,則二重積分|x|dxdy的值是:()
單調函數(shù)的導函數(shù)也是單調函數(shù)。
廣義積分e-2xdx=()
若連續(xù)函數(shù)y=f(x)在x0點不可導,則曲線y=f(x)在(x0,f(x0))點沒有切線.