設(shè)隨機(jī)變量W服從分布χ2(5),求λ的值使其滿足
P{W≤λ}=0.05
您可能感興趣的試卷
最新試題
已知A=,B=(1 0 1),求AB,BA,和(AB)4
一顆均勻的骰子連續(xù)擲100次,求擲出點(diǎn)數(shù)之和在300到400之間的概率。
某車間有400臺(tái)同類型機(jī)器,工作相互獨(dú)立,每臺(tái)機(jī)器需要的電功率為θ瓦,由于工藝關(guān)系,每臺(tái)機(jī)器開(kāi)動(dòng)時(shí)間占工作總時(shí)間的3/4,問(wèn)應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?
設(shè)X~U[0,λ],X1,X2,…,Xn是取自X的一個(gè)樣本,求的矩法估計(jì)。
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問(wèn)至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?
設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。
某學(xué)校600名學(xué)生參加計(jì)算機(jī)應(yīng)用課程考試的成績(jī)近似地服從N(75,82)試估計(jì)成績(jī)?cè)赱90,100],[70,80),[0,60)分?jǐn)?shù)段內(nèi)的人數(shù)。
求下列矩陣的秩:
某車間有200臺(tái)機(jī)床獨(dú)立工作,每臺(tái)機(jī)床在工作時(shí)間內(nèi)有70%的時(shí)間開(kāi)動(dòng),每臺(tái)機(jī)床工作時(shí)需耗電1kw,問(wèn)應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。
某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過(guò)10次的概率。