問答題

假設隨機變量X服從正態(tài)分布N(μ,2.82),現(xiàn)有X的10個觀察值x1,x2,…,x10,已知

要想使0.95的置信區(qū)間長度小于1,觀察值個數(shù)n最少應取多少?

您可能感興趣的試卷

你可能感興趣的試題

最新試題

甲乙兩臺機床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計出甲乙機床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺機床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。

題型:問答題

某年級進行英語和計算機應用兩門課程的測驗,經(jīng)統(tǒng)計,英語的平均分數(shù)為80分,標準差為6分;計算機應用的平均分數(shù)為70分,標準差為9分。某學生英語考得85分,計算機應用考得80分,試問該生哪門課程成績在全年級相對較好?

題型:問答題

根據(jù)長期資料的分析,知道某種鋼筋的強度服從正態(tài)分布,今隨機抽取6根鋼筋進行強度試驗,測得強度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認為該種鋼筋的平均強度為52.0Mpa?(α=0.052)

題型:問答題

設燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:問答題

某尋呼臺在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過10次的概率。

題型:問答題

若按總分從高到低錄取,試分析一總分為237分的考生被錄取為正式工的可能性。

題型:問答題

設隨機變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。

題型:問答題

設隨機變量X服從參數(shù)λ=1的指數(shù)分布,求E(3X-2)和D(3X-2)。

題型:問答題

已知,求A+B,A-B,2A-B,AC,CA,ACB,AB′。

題型:問答題

樣本值:54,67,68,78,70,66,67,70,65,69,分別計算樣本平均值和樣本方差。

題型:問答題