判斷級(jí)數(shù)(-1)n(1-cosα/n)(α>0常數(shù))的斂散性。
您可能感興趣的試卷
你可能感興趣的試題
數(shù)列{un}與級(jí)數(shù)un是否同收斂、同發(fā)散?
最新試題
設(shè)隨機(jī)變量ξ的分布列為,求E(ξ),E(-ξ+1),E(ξ2)
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問(wèn):能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)
某年級(jí)進(jìn)行英語(yǔ)和計(jì)算機(jī)應(yīng)用兩門課程的測(cè)驗(yàn),經(jīng)統(tǒng)計(jì),英語(yǔ)的平均分?jǐn)?shù)為80分,標(biāo)準(zhǔn)差為6分;計(jì)算機(jī)應(yīng)用的平均分?jǐn)?shù)為70分,標(biāo)準(zhǔn)差為9分。某學(xué)生英語(yǔ)考得85分,計(jì)算機(jī)應(yīng)用考得80分,試問(wèn)該生哪門課程成績(jī)?cè)谌昙?jí)相對(duì)較好?
已知,求A+B,A-B,2A-B,AC,CA,ACB,AB′。
取自某校畢業(yè)生的一個(gè)100人的簡(jiǎn)單隨機(jī)樣本,有48人年收入不少于3萬(wàn)元,估計(jì)該校畢業(yè)生中年收入不少于3萬(wàn)元的所有畢業(yè)生的百分比。
某電視臺(tái)廣告部稱某類企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤(rùn)增加量)至少為15萬(wàn)元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬(wàn)元,標(biāo)準(zhǔn)差3.4萬(wàn)元。試在α=0.05的水平下判斷該廣告部的說(shuō)法是否正確?
某市一次全.市初三英語(yǔ)會(huì)考的考試成績(jī)可以用正態(tài)分布來(lái)描述,其平均成績(jī)?yōu)棣?70(分),標(biāo)準(zhǔn)差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。
某型號(hào)日光燈管的使用壽命(單位:h)服從參數(shù)λ=1/2000的指數(shù)分布,任取一只這種燈管,求它能正常使用1500h以上的概率。
求矩陣的逆矩陣:。
設(shè)隨機(jī)變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。