模型,其中D為虛擬變量。當(dāng)統(tǒng)計檢驗表明下列哪項成立時,原模型為截距變動模型()。
A.α0=0
B.α1=0
C.β0=0
D.β1=0
您可能感興趣的試卷
你可能感興趣的試題
A.1個
B.2個
C.3個
D.4個
消費函數(shù),其中虛擬變量,當(dāng)統(tǒng)計檢驗表明下列哪項成立時,表示城鎮(zhèn)家庭與農(nóng)村家庭有一樣的消費行為()。
A.1=0,β1=0
B.1=0,β1≠0
C.1≠0,β1=0
D.1≠0,β1≠0
設(shè)個人消費函數(shù)中,消費支出Y不僅同收入X有關(guān),而且與消費者年齡構(gòu)成有關(guān),年齡構(gòu)成可分為青年、中年和老年三個層次,假設(shè)邊際消費傾向不變,則考慮年齡因素的影響,該消費函數(shù)引入虛擬變量的個數(shù)應(yīng)為()。
A.1個
B.2個
C.3個
D.4個
對于模型,為了考慮“地區(qū)”因素(北方、南方)。引入2個虛擬變量形式形成截距變動模型,則會產(chǎn)生()。
A.序列的完全相關(guān)
B.序列不完全相關(guān)
C.完全多重共線性
D.不完全多重共線性
假設(shè)某需求函數(shù)為,為了考慮“季節(jié)”因素(春、夏、秋、冬四個不同的狀態(tài))。引入4個虛擬變量形式形成截距變動模型,則模型的()。
A.參數(shù)估計量將達到最大精度
B.參數(shù)估計量是有偏估計量
C.參數(shù)估計量是非一致估計量
D.參數(shù)將無法估計
根據(jù)樣本資料建立某消費函數(shù)如下:,其中C為消費,X為收入,虛擬變量,所有參數(shù)均檢驗顯著,則城鎮(zhèn)家庭的消費函數(shù)為()。
A.A
B.B
C.C
D.D
某商品需求函數(shù)為,其中Y為需求量,X為價格。為了考慮“地區(qū)”(農(nóng)村、城市)。和“季節(jié)”(春、夏、秋、冬)。兩個因素的影響,擬引入虛擬變量,則應(yīng)引入虛擬變量的個數(shù)為()。
A.2
B.4
C.5
D.6
最新試題
在簡單線性回歸模型y=β0+β1x+u中,假定E(u)≠0。令α0=E(u)。證明:這個模型總可以改寫為另一種形式:斜率與原來相同,但截距和誤差有所不同,并且新的誤差期望值為零。
對于被解釋變量平均值預(yù)測與個別值預(yù)測區(qū)間,()。
對于被解釋變量平均值預(yù)測與個別值預(yù)測,()。
給定顯著性水平及自由度,若計算得到的值超過臨界值,我們將接受零假設(shè)。
請簡述工具變量法的基本思想。
在計量經(jīng)濟模型中,隨機擾動項與殘差項無區(qū)別。
工具變量法的基本思想是通過尋找一個與誤差項相關(guān)的變量,來消除什么問題?()
簡述什么是工具變量法,并舉例說明其應(yīng)用場景。
無多重共線性是簡單線性回歸模型的古典假定之一。
計量經(jīng)濟學(xué)的主要任務(wù)不包括以下哪一項?()