判斷級(jí)數(shù)的收斂域: (-1) n (7/6) n
您可能感興趣的試卷
最新試題
某電視臺(tái)廣告部稱某類企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤增加量)至少為15萬元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬元,標(biāo)準(zhǔn)差3.4萬元。試在α=0.05的水平下判斷該廣告部的說法是否正確?
某型號(hào)日光燈管的使用壽命(單位:h)服從參數(shù)λ=1/2000的指數(shù)分布,任取一只這種燈管,求它能正常使用1500h以上的概率。
求矩陣的逆矩陣。
對(duì)圓的直徑作近似測量,其值均勻分布在區(qū)間[a,b]上,求圓的面積的數(shù)學(xué)期望。
設(shè)燈泡使用時(shí)數(shù)X~N(μ,σ2),為了估計(jì)期望μ和方差σ2,共測試了10個(gè)燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
已知離散隨機(jī)變量X的分布列為,求E(X2),E(X-1)
設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。
某市一次全.市初三英語會(huì)考的考試成績可以用正態(tài)分布來描述,其平均成績?yōu)棣?70(分),標(biāo)準(zhǔn)差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。
設(shè)隨機(jī)變量X服從參數(shù)λ=1的指數(shù)分布,求E(3X-2)和D(3X-2)。
取自某校畢業(yè)生的一個(gè)100人的簡單隨機(jī)樣本,有48人年收入不少于3萬元,估計(jì)該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。