設x=(1 0 4 6 3 4)T,求一個Householder變換H和一個正數(shù)α使得
討論向量組的線性相關性。
試問向量β可否由向量組α1,α2,α3,α4線性表示?若能,求出β由α1,α2,α3,α4線性表示的表達式。
設 求對應的LS問題的全部解。
最新試題
設行列式D1=,D2=,則D1與D2的關系為()。
若向量組α1、α2、α3、α4線性相關,則()
二次型f(x1,x2,x3)=2x12+x22-4x1x2-4x2x3為正定二次型。()
設A為3×5矩陣,B為4×3矩陣,且乘AC'B有意義,則C為()矩陣。
計算行列式=()。
如果A2-6A=E,則A-1=()
設A,B均為n階方陣,則下列結論正確的是()
設A=則A=()
A為任一方陣,則A+AT,AAT均為對稱陣。()
若A為n階可逆矩陣,則R(A)=()。