您可能感興趣的試卷
你可能感興趣的試題
求線性方程組,的解。
求線性方程組,的解。
利用初等變換求解下列線性方程組:
利用初等變換求解下列線性方程組:
利用初等變換求解下列線性方程組:
利用初等變換求解下列線性方程組:
用克拉默法則求解下列線性方程組:
用克拉默法則求解下列線性方程組:
最新試題
求矩陣的逆矩陣。
設(shè)X1,X2,…,Xn是總體X的一個(gè)樣本,試證和都是總體均值的無偏估計(jì),并判斷哪一個(gè)比較有效。
某車間有400臺(tái)同類型機(jī)器,工作相互獨(dú)立,每臺(tái)機(jī)器需要的電功率為θ瓦,由于工藝關(guān)系,每臺(tái)機(jī)器開動(dòng)時(shí)間占工作總時(shí)間的3/4,問應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?
設(shè)燈泡使用時(shí)數(shù)X~N(μ,σ2),為了估計(jì)期望μ和方差σ2,共測(cè)試了10個(gè)燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
取自某校畢業(yè)生的一個(gè)100人的簡(jiǎn)單隨機(jī)樣本,有48人年收入不少于3萬元,估計(jì)該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。
某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。
已知離散隨機(jī)變量X的分布列為,求E(X2),E(X-1)
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)
甲乙兩臺(tái)機(jī)床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計(jì)出甲乙機(jī)床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺(tái)機(jī)床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。
設(shè)隨機(jī)變量X服從參數(shù)λ=1的指數(shù)分布,求E(3X-2)和D(3X-2)。