問答題
設(shè)n階實(shí)對(duì)稱矩陣A的秩為r,試證明:
存在可逆矩陣C,使得CTAC=diag(d1,…,di,0,…,0)(d1≠0,i=1,2,…,r).您可能感興趣的試卷
你可能感興趣的試題
最新試題
若A和B是同階相似方陣,則A和B具有相同的特征值。()
題型:判斷題
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線性無關(guān);當(dāng)()時(shí)向量組線性相關(guān)。
題型:填空題
二次型f(x1,x2,x3)=2x12+x22-4x1x2-4x2x3為正定二次型。()
題型:判斷題
設(shè)A=則A=()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)行列式D1=,D2=,則D1與D2的關(guān)系為()。
題型:填空題
若向量a1,a2,…an線性相關(guān),則向量組內(nèi)()可被該向量組內(nèi)其余向量線性表出。
題型:?jiǎn)雾?xiàng)選擇題
若排列21i36j87為偶排列,則i=(),j=()
題型:填空題
矩陣的特征值為()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)五階方陣的行列式A=-2,則 kA=(-2k)。()
題型:判斷題